Nhị thức \(f(x) = ax + b (a ≠ 0)\) cùng dấu với hệ số \(a\) khi \(x\) lấy giá trị trong khoảng \(\left ( -\frac{b}{a}; +\infty \right )\) và trái dấu với hệ số \(a\) khi \(x\) lấy các giá trị trong khoảng \(\left ( -\infty ; -\frac{b}{a} \right ).\) Nội dung định lí được mô tả trong bảng sau, gọi là bảng xét dấu của \(f(x) = ax + b\) như sau:
Chào bạn. Bạn có thể hỏi Bờm các câu hỏi đại loại như: "Tập hợp con là gì", "khái niệm tập hợp", "pt bậc 2", "hàm bậc nhất là gì", "lực ma sát là gì", "sin x"... Thử và cho Bot Bờm ý kiến nhé.
Bốt Bờm biết gì?
Bốt Bờm đã học được:
Đại số và Hình học lớp 10
Đại số và Giải tích, Hình học lớp 11
Giải tích và Hình học lớp 12
và Bốt Bờm đang chăm chỉ học tiếp các kiến thức khác
Mời bạn dành chút thời gian góp ý tại đây để Bot Bờm hoàn thiện hơn nhé. Cảm ơn bạn và chúc bạn học thật tốt!
Ủng hộ Bot Bờm bằng cách share ngay và luôn bạn nhé!
Bot Bờm
Định lý về dấu của nhị thức bậc nhất
Nhị thức \(f(x) = ax + b (a ≠ 0)\) cùng dấu với hệ số \(a\) khi \(x\) lấy giá trị trong khoảng \(\left ( -\frac{b}{a}; +\infty \right )\) và trái dấu với hệ số \(a\) khi \(x\) lấy các giá trị trong khoảng \(\left ( -\infty ; -\frac{b}{a} \right ).\) Nội dung định lí được mô tả trong bảng sau, gọi là bảng xét dấu của \(f(x) = ax + b\) như sau:
Xem thêm: định lý về dấu của nhị thức bậc nhấtnhị thức bậc nhấtxét dấu tích, thương các nhị thức bậc nhấtdấu của tam thức bậc haiđịnh lí về giới hạn hữu hạn
Bot Bờm
Thử và cho Bot Bờm ý kiến nhé.