Định nghĩa: Các giá trị \(\sin \alpha ,\cos \alpha {\rm{, tan}}\alpha {\rm{, cot}}\alpha \) được gọi là các giá trị lượng giác của cung . Ta cũng gọi trục tung là trục sin, còn trục hoành là trục côsin.
Chú ý:
1. Các định nghĩa trên cũng áp dụng cho các góc lượng giác.
2. Nếu \({0^ \circ } \le \alpha \le {180^ \circ }\) thì các giá trị lượng giác của góc \[\alpha \] chính là các giá trị lượng giác của góc đó.
Chào bạn. Bạn có thể hỏi Bờm các câu hỏi đại loại như: "Tập hợp con là gì", "khái niệm tập hợp", "pt bậc 2", "hàm bậc nhất là gì", "lực ma sát là gì", "sin x"... Thử và cho Bot Bờm ý kiến nhé.
Bốt Bờm biết gì?
Bốt Bờm đã học được:
Đại số và Hình học lớp 10
Đại số và Giải tích, Hình học lớp 11
Giải tích và Hình học lớp 12
và Bốt Bờm đang chăm chỉ học tiếp các kiến thức khác
Mời bạn dành chút thời gian góp ý tại đây để Bot Bờm hoàn thiện hơn nhé. Cảm ơn bạn và chúc bạn học thật tốt!
Ủng hộ Bot Bờm bằng cách share ngay và luôn bạn nhé!
Bot Bờm
Giá trị lượng giác của cung alpha
Định nghĩa
Trên đường tròn lượng giác, cho điểm \(M\left( {{x_o},{y_o}} \right)\) sao cho cung lượng giác AM có sđ\(AM = \alpha \). Khi đó:
\(\begin{array}{l}
\sin \alpha = \overline {OK} = {y_0}\\
\cos \alpha = \overline {OH} = {x_0}\\
\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}{\rm{ }}\left( {\cos \alpha \ne 0} \right)\\
\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }}{\rm{ }}\left( {\sin \alpha \ne 0} \right)
\end{array}\)
Định nghĩa: Các giá trị \(\sin \alpha ,\cos \alpha {\rm{, tan}}\alpha {\rm{, cot}}\alpha \) được gọi là các giá trị lượng giác của cung . Ta cũng gọi trục tung là trục sin, còn trục hoành là trục côsin.
Chú ý:
1. Các định nghĩa trên cũng áp dụng cho các góc lượng giác.
2. Nếu \({0^ \circ } \le \alpha \le {180^ \circ }\) thì các giá trị lượng giác của góc \[\alpha \] chính là các giá trị lượng giác của góc đó.
Ví dụ 1: Tính \(\sin \frac{{25\pi }}{4}\), \(cos\left( { - {{240}^o}} \right)\)
Hướng dẫn:
Để tính giá trị lượng giác của cung lượng giác AM có số đo \(\alpha \) bất kì, ta thực hiện theo các bước:
+ Biểu diễn cung lượng giác AM trên đường tròn lượng giác.
+ Tìm tọa độ điểm M, từ đó áp dụng định nghĩa suy ra các giá trị lượng giác cần tìm.
Ta có \(\frac{{25\pi }}{4} = \frac{\pi }{4} + 3.2\pi \)
Suy ra \(\sin \frac{{25\pi }}{4} = \sin \frac{\pi }{4} = \frac{{\sqrt 2 }}{2}\)
Tương tự \( - {240^0} = {120^0} - {360^0}\)
Suy ra \(cos\left( { - {{240}^o}} \right) = cos{120^ \circ } = - \frac{1}{2}\)
Hệ quả
1) \(\sin \alpha \) và \(\cos \alpha \) xác định với mọi \(\alpha \in R\).
\(\begin{array}{l}
\sin \left( {\alpha + k2\pi } \right) = \sin \alpha ,\forall k \in Z\\
\cos \left( {\alpha + k2\pi } \right) = \cos \alpha ,\forall k \in Z
\end{array}\)
2) \( - 1 \le \sin \alpha \le 1, - 1 \le \cos \alpha \le 1\)
3) Với mọi \(m \in R\) mà \( - 1 \le m \le 1\) đều tồn tại \(\alpha \) và \(\beta \) sao cho \(\sin \alpha = m\) và \(\cos \alpha = m\).
4) \(\tan \alpha \) xác định với mọi \(\alpha \ne \frac{\pi }{2} + k\pi {\rm{ }}\left( {k \in Z} \right)\)
5) \(\cot \alpha \) xác định với mọi \(\alpha \ne k\pi {\rm{ }}\left( {k \in Z} \right)\)
6) Bảng xác định dấu của các giá trị lượng giác
Giá trị lượng giác của các cung đặc biệt
Xem thêm: hàm số sinhàm số liên tụchàm số y = |x|sự rơi tự dophương trình sinx = a
Bot Bờm
Thử và cho Bot Bờm ý kiến nhé.