Định lí 1: Nếu mặt phẳng \(\left( P \right)\) chứa hai đường thẳng \(a,\,\,b\) cắt nhau và cùng song song với mặt phẳng \(\left( Q \right)\) thì \(\left( P \right)\) song song \(\left( Q \right).\)
Tức là: \(\left\{ \begin{array}{l}a,\,\,b \in \left( P \right)\\a \cap b = \left\{ I \right\}\\a\parallel \left( P \right),\,\,b\parallel \left( Q \right)\end{array} \right. \Rightarrow \,\,\left( P \right)\parallel \left( Q \right).\)
2. Tính chất
Tính chất 1: Qua một điểm nằm ngoài một mặt phẳng, có một và chỉ một mặt phẳng song song với mặt phẳng đó.
Cách dựng: - Trong \(\left( P \right)\) dựng \(a,\,\,b\) cắt nhau.
Qua \(O\) dựng \({a_1}\parallel a,\;{b_1}\parallel b.\)
Mặt phẳng \(\left( {{a_1},\,\,{b_1}} \right)\) là mặt phẳng qua \(O\) và song song với \(\left( P \right).\)
Hệ quả 1: Nếu đường thẳng \(a\) song song với mặt phẳng \(\left( Q \right)\) thì qua \(a\) có một và chỉ một mặt phẳng \(\left( P \right)\) song song với \(\left( Q \right).\)
Hệ quả 2: Hai mặt phẳng phân biệt cùng song song với một mặt phẳng thứ ba thì song song với nhau.
Tính chất 2: Nếu hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song thì mặt phẳng \(\left( R \right)\) đã cắt \(\left( P \right)\) thì phải cắt \(\left( Q \right)\) và các giao tuyến của chúng song song.
Tức là: \(\left\{ \begin{array}{l}\left( P \right)\parallel \left( Q \right)\\a = \left( P \right) \cap \left( R \right)\\b = \left( Q \right) \cap \left( R \right)\end{array} \right. \Rightarrow \,\,a\parallel b.\)
Định lí Ta – lét trong không gian: Ba mặt phẳng đôi một song song chắn trên hai cát tuyến bất kì các đoạn thẳng tương ứng tỷ lệ.
Tức là: \(\left\{ \begin{array}{l}\left( P \right)\parallel \left( Q \right)\parallel \left( R \right)\\a \cap \left( P \right) = {A_1};\,\,a \cap \left( Q \right) = {B_1};\,\,a \cap \left( R \right) = {C_1}\\b \cap \left( P \right) = {A_2};\,\,b \cap \left( Q \right) = {B_2};\,\,b \cap \left( P \right) = {C_2}\end{array} \right.\)
Chào bạn. Bạn có thể hỏi Bờm các câu hỏi đại loại như: "Tập hợp con là gì", "khái niệm tập hợp", "pt bậc 2", "hàm bậc nhất là gì", "lực ma sát là gì", "sin x"... Thử và cho Bot Bờm ý kiến nhé.
Bốt Bờm biết gì?
Bốt Bờm đã học được:
Đại số và Hình học lớp 10
Đại số và Giải tích, Hình học lớp 11
Giải tích và Hình học lớp 12
và Bốt Bờm đang chăm chỉ học tiếp các kiến thức khác
Mời bạn dành chút thời gian góp ý tại đây để Bot Bờm hoàn thiện hơn nhé. Cảm ơn bạn và chúc bạn học thật tốt!
Ủng hộ Bot Bờm bằng cách share ngay và luôn bạn nhé!
Bot Bờm
Hai mặt phẳng song song
1. Điều kiện để hai mặt phẳng song song
Định lí 1: Nếu mặt phẳng \(\left( P \right)\) chứa hai đường thẳng \(a,\,\,b\) cắt nhau và cùng song song với mặt phẳng \(\left( Q \right)\) thì \(\left( P \right)\) song song \(\left( Q \right).\)
Tức là: \(\left\{ \begin{array}{l}a,\,\,b \in \left( P \right)\\a \cap b = \left\{ I \right\}\\a\parallel \left( P \right),\,\,b\parallel \left( Q \right)\end{array} \right. \Rightarrow \,\,\left( P \right)\parallel \left( Q \right).\)
2. Tính chất
Tính chất 1: Qua một điểm nằm ngoài một mặt phẳng, có một và chỉ một mặt phẳng song song với mặt phẳng đó.
Tức là: \(O \notin \left( P \right) \Rightarrow \,\,\exists !\,\,\left( Q \right):\left\{ \begin{array}{l}O \in \left( Q \right)\\\left( P \right)\parallel \left( Q \right)\end{array} \right.\,.\)
Cách dựng: - Trong \(\left( P \right)\) dựng \(a,\,\,b\) cắt nhau.
Hệ quả 1: Nếu đường thẳng \(a\) song song với mặt phẳng \(\left( Q \right)\) thì qua \(a\) có một và chỉ một mặt phẳng \(\left( P \right)\) song song với \(\left( Q \right).\)
Hệ quả 2: Hai mặt phẳng phân biệt cùng song song với một mặt phẳng thứ ba thì song song với nhau.
Tính chất 2: Nếu hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song thì mặt phẳng \(\left( R \right)\) đã cắt \(\left( P \right)\) thì phải cắt \(\left( Q \right)\) và các giao tuyến của chúng song song.
Tức là: \(\left\{ \begin{array}{l}\left( P \right)\parallel \left( Q \right)\\a = \left( P \right) \cap \left( R \right)\\b = \left( Q \right) \cap \left( R \right)\end{array} \right. \Rightarrow \,\,a\parallel b.\)
Định lí Ta – lét trong không gian: Ba mặt phẳng đôi một song song chắn trên hai cát tuyến bất kì các đoạn thẳng tương ứng tỷ lệ.
Tức là: \(\left\{ \begin{array}{l}\left( P \right)\parallel \left( Q \right)\parallel \left( R \right)\\a \cap \left( P \right) = {A_1};\,\,a \cap \left( Q \right) = {B_1};\,\,a \cap \left( R \right) = {C_1}\\b \cap \left( P \right) = {A_2};\,\,b \cap \left( Q \right) = {B_2};\,\,b \cap \left( P \right) = {C_2}\end{array} \right.\)
\( \Rightarrow \,\,\frac{{{A_1}{B_1}}}{{{B_1}{C_1}}} = \frac{{{A_2}{B_2}}}{{{B_2}{C_2}}}\,.\)
Xem thêm: hai mặt phẳng song songhai mặt phẳng vuông góckhoảng cách giữa hai mặt phẳng song songđường thẳng và mặt phẳng song songmặt phẳng
Bot Bờm
Thử và cho Bot Bờm ý kiến nhé.