• Bot Bờm

    Khái niệm hàm số luỹ thừa

    Hàm số luỹ thừa là hàm số có dạng \(y=x^{\alpha}\), trong đó \(\alpha\) là một hằng số tuỳ ý.
    Từ định nghĩa các luỹ thừa, ta thấy: 

    • Hàm số \(y=x^n\) với n nguyên dương, xác định với mọi \(x \in \mathbb{R}\).

    • Hàm số \(y=x^n\), với n nguyên âm hoặc n = 0, xác định với mọi \(x \in \mathbb{R}\backslash \left\{ 0 \right\}\).

    • Hàm số \(y=x^{\alpha}\), với \(\alpha\) không nguyên, có tập xác định là tập hợp các số thực dương \(\left( {0; + \infty } \right)\)

    Người ta chứng minh được rằng hàm số lũy thừa liên tục trên tập xác định của nó.
    ♦ Chú ý:
    Theo định nghĩa, đẳng thức \(\sqrt[n]{x} = {x^{\frac{1}{n}}}\) chỉ xảy ra nếu \(x>0\) do đó, hàm số \(y=x^\frac{1}{n}\) không đồng nhất với hàm số \(y = \sqrt[n]{x}(n \in {\mathbb{N}^*})\). Chẳng hạn, hàm số \(y = \sqrt[3]{x}\) là hàm số căn bậc ba, xác định với mọi \(x \in \mathbb{R}\); còn hàm số luỹ thừa \(y=x^\frac{1}{3}\) chỉ xác định trên \(\left( {0; + \infty } \right)\).


    Xem thêm: khái niệm hàm số luỹ thừakhái niệm hàm sốđạo hàm của hàm số luỹ thừakhái niệm lũy thừakhái niệm bất đẳng thức

  • Bot Bờm
    Chào bạn. Bạn có thể hỏi Bờm các câu hỏi đại loại như: "Tập hợp con là gì", "khái niệm tập hợp", "pt bậc 2", "hàm bậc nhất là gì", "lực ma sát là gì", "sin x"...
    Thử và cho Bot Bờm ý kiến nhé.

Bốt Bờm biết gì?

Bốt Bờm đã học được:

  • Đại số và Hình học lớp 10
  • Đại số và Giải tích, Hình học lớp 11
  • Giải tích và Hình học lớp 12
  • và Bốt Bờm đang chăm chỉ học tiếp các kiến thức khác

Mời bạn dành chút thời gian góp ý tại đây để Bot Bờm hoàn thiện hơn nhé. Cảm ơn bạn và chúc bạn học thật tốt!

Ủng hộ Bot Bờm bằng cách share ngay và luôn bạn nhé!