Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng của \(\mathbb{R}.\)
Định nghĩa:
Cho hàm số \(f(x)\) xác định trên K.
Hàm số \(F(x)\) được gọi là nguyên hàm của hàm số \(f(x)\) trên K nếu \(F'(x) = f(x)\) với mọi \(x \in K.\)
Định lý 1:
Nếu \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên K thì với mỗi hằng số C, hàm số \(G(x) = F(x)+C\) cũng là một nguyên hàm của hàm số \(f(x)\) trên K.
Định lý 2:
Nếu \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên K thì mọi nguyên hàm của \(f(x)\) trên K đều có dạng \(F(x)+C\) với \(C\) là một hằng số tùy ý.
Kí hiệu họ nguyên hàm của hàm số \(f(x)\) là \(\int f(x)dx.\)
Khi đó : \(\int f(x)dx=F(x)+C,C\in \mathbb{R}.\)
b) Tính chất
Tính chất 1: \(\int f'(x)dx=f(x)+C,C\in \mathbb{R}.\)
Tính chất 2: \(\int fk(x)dx=k\int f(x)dx\) (với k là hằng số khác 0).
Tính chất 3: \(\int {\left( {f(x) \pm g(x)} \right)dx} = \int {f(x)dx} \pm \int {g(x)dx}.\)
c) Sự tồn tại của nguyên hàm
Định lí 3:
Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.
Chào bạn. Bạn có thể hỏi Bờm các câu hỏi đại loại như: "Tập hợp con là gì", "khái niệm tập hợp", "pt bậc 2", "hàm bậc nhất là gì", "lực ma sát là gì", "sin x"... Thử và cho Bot Bờm ý kiến nhé.
Bốt Bờm biết gì?
Bốt Bờm đã học được:
Đại số và Hình học lớp 10
Đại số và Giải tích, Hình học lớp 11
Giải tích và Hình học lớp 12
và Bốt Bờm đang chăm chỉ học tiếp các kiến thức khác
Mời bạn dành chút thời gian góp ý tại đây để Bot Bờm hoàn thiện hơn nhé. Cảm ơn bạn và chúc bạn học thật tốt!
Ủng hộ Bot Bờm bằng cách share ngay và luôn bạn nhé!
Bot Bờm
Nguyên hàm
a) Khái niệm nguyên hàm
Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng của \(\mathbb{R}.\)
Định nghĩa:
Cho hàm số \(f(x)\) xác định trên K.
Hàm số \(F(x)\) được gọi là nguyên hàm của hàm số \(f(x)\) trên K nếu \(F'(x) = f(x)\) với mọi \(x \in K.\)
Định lý 1:
Nếu \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên K thì với mỗi hằng số C, hàm số \(G(x) = F(x)+C\) cũng là một nguyên hàm của hàm số \(f(x)\) trên K.
Định lý 2:
Nếu \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên K thì mọi nguyên hàm của \(f(x)\) trên K đều có dạng \(F(x)+C\) với \(C\) là một hằng số tùy ý.
Kí hiệu họ nguyên hàm của hàm số \(f(x)\) là \(\int f(x)dx.\)
Khi đó : \(\int f(x)dx=F(x)+C,C\in \mathbb{R}.\)
b) Tính chất
c) Sự tồn tại của nguyên hàm
Định lí 3:
Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.
d) Nguyên hàm của một số hàm số thường gặp
Xem thêm: nguyên hàmhình viên phâncác phương pháp tính nguyên hàmquy tắc tính đạo hàmlăng kính
Bot Bờm
Thử và cho Bot Bờm ý kiến nhé.