1. Phép biến hình \(f\) được gọi là phép đồng dạng tỉ số \(k\), \((k>0)\), nếu với hai điểm \(M, N\) bất kì và ảnh \(M', N'\) tương ứng của chúng, ta luôn có \(M'N' = kMN\)
2. a) Phép dời hình là phép đồng dạng tỉ số \(1\)
b) Phép vị tự tỉ số \(k\) là phép đồng dạng tỉ số \(|k|\)
3. Nếu thực hiện liên tiếp phép đồng dạng tỉ số \(k\) và phép đồng dạng tỉ số \(p\) ta được phép đồng dạng tỉ số \(pk\)
4. Phép đồng dạng tỉ số \(k\) là hợp thành của một phép dời hình và một phép vị tự tỉ số \(k\) hoặc \(-k\). Nó cũng là hợp thành của một phép vị tự tỉ số \(k\) hoặc \(-k\) và một phép dời hình
5. Phép đồng dạng tỉ số \(k\) có các tính chất:
a) Biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toàn thứ tự giữ các điểm ấy
b) Biến đường thẳng thành đường thẳng, biến tia thành tia, biến đoạn thẳng có độ dài bằng \(a\) thành đoạn thẳng có độ dài bằng \(ka\)
c) Biến tam giác thành tam giác đồng dạng với tỉ số đồng dạng là \(k\), biến góc thành góc bằng nó
d) Biến đường tròn bán kình \(R\) thành đường tròn bán kính \(k R\)
6. Hai hình được gọi là đồng dạng với nhau nếu có một phép đồng dạng biến hình này thành hình kia.
Chào bạn. Bạn có thể hỏi Bờm các câu hỏi đại loại như: "Tập hợp con là gì", "khái niệm tập hợp", "pt bậc 2", "hàm bậc nhất là gì", "lực ma sát là gì", "sin x"... Thử và cho Bot Bờm ý kiến nhé.
Bốt Bờm biết gì?
Bốt Bờm đã học được:
Đại số và Hình học lớp 10
Đại số và Giải tích, Hình học lớp 11
Giải tích và Hình học lớp 12
và Bốt Bờm đang chăm chỉ học tiếp các kiến thức khác
Mời bạn dành chút thời gian góp ý tại đây để Bot Bờm hoàn thiện hơn nhé. Cảm ơn bạn và chúc bạn học thật tốt!
Ủng hộ Bot Bờm bằng cách share ngay và luôn bạn nhé!
Bot Bờm
Phép đồng dạng
1. Phép biến hình \(f\) được gọi là phép đồng dạng tỉ số \(k\), \((k>0)\), nếu với hai điểm \(M, N\) bất kì và ảnh \(M', N'\) tương ứng của chúng, ta luôn có \(M'N' = kMN\)
2. a) Phép dời hình là phép đồng dạng tỉ số \(1\)
b) Phép vị tự tỉ số \(k\) là phép đồng dạng tỉ số \(|k|\)
3. Nếu thực hiện liên tiếp phép đồng dạng tỉ số \(k\) và phép đồng dạng tỉ số \(p\) ta được phép đồng dạng tỉ số \(pk\)
4. Phép đồng dạng tỉ số \(k\) là hợp thành của một phép dời hình và một phép vị tự tỉ số \(k\) hoặc \(-k\). Nó cũng là hợp thành của một phép vị tự tỉ số \(k\) hoặc \(-k\) và một phép dời hình
5. Phép đồng dạng tỉ số \(k\) có các tính chất:
a) Biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toàn thứ tự giữ các điểm ấy
b) Biến đường thẳng thành đường thẳng, biến tia thành tia, biến đoạn thẳng có độ dài bằng \(a\) thành đoạn thẳng có độ dài bằng \(ka\)
c) Biến tam giác thành tam giác đồng dạng với tỉ số đồng dạng là \(k\), biến góc thành góc bằng nó
d) Biến đường tròn bán kình \(R\) thành đường tròn bán kính \(k R\)
6. Hai hình được gọi là đồng dạng với nhau nếu có một phép đồng dạng biến hình này thành hình kia.
Xem thêm: phép đồng dạnghình đồng dạngphép tịnh tiếnphép đối xứng tâmvectơ đồng phẳng
Bot Bờm
Thử và cho Bot Bờm ý kiến nhé.