1. Cho đường thẳng \(d\). Phép biến hình biến mỗi điểm \(M\) thuộc \(d\) thành chính nó, biến mỗi điểm \(M\) không thuộc \(d\) thành \(M'\) sao cho \(d\) là đường trung trực của đoạn thẳng \(MM'\), được gọi là phép đối xứng qua đường thẳng \(d\) hay phép đối xứng trục \(d\).
Phép đối xứng trục \(d\) thường được kí hiệu là \(Đ_d\)
Nếu hình \(H'\) là ảnh của hình \(H\) qua \(Đ_d\) thì ta còn nói \(H\) đối xứng với \(H'\) qua \(d\), hay \(H\) và \(H'\) đối xứng với nhau qua \(d\).
2. Cho đường thẳng \(d\). Với mỗi điểm \(M\), gọi \(M''\) là hình chiếu vuông góc của \(M\) trên đường thẳng \(d\). Khi đó
\(M' = Đ_d(M)\) khi và chỉ khi \(\overrightarrow{M''M'}\) = \(\overrightarrow{-M''M}\)
3. \(M' = Đ_d(M)\) khi và chỉ khi \(M = Đ_d(M')\)
4.- Biểu thức tọa độ của phép đối xứng qua trục \(Ox\):
- Biểu thức tọa độ của phép đối xứng qua trục \(Oy\)
\(\left\{\begin{matrix} {x}'= -x\\ {y}'= y \end{matrix}\right.\)
5. Phép đối xứng trục bảo toàn khoảng cách giữa hai điểm bất kì.
6. Phép đối xứng trục biến đường thẳng thành đường thẳng, biến đoạn thẳng thành đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nó, biến đường tròn thành đường tròn cùng bán kính.
7. Đường thẳng \(d\) được gọi là trục đối xứng của hình \(H\) nếu phép đối xứng qua \(d\) biến \(H\) thành chính nó. Tức \(Đ_d (H') = H\)
Chào bạn. Bạn có thể hỏi Bờm các câu hỏi đại loại như: "Tập hợp con là gì", "khái niệm tập hợp", "pt bậc 2", "hàm bậc nhất là gì", "lực ma sát là gì", "sin x"... Thử và cho Bot Bờm ý kiến nhé.
Bốt Bờm biết gì?
Bốt Bờm đã học được:
Đại số và Hình học lớp 10
Đại số và Giải tích, Hình học lớp 11
Giải tích và Hình học lớp 12
và Bốt Bờm đang chăm chỉ học tiếp các kiến thức khác
Mời bạn dành chút thời gian góp ý tại đây để Bot Bờm hoàn thiện hơn nhé. Cảm ơn bạn và chúc bạn học thật tốt!
Ủng hộ Bot Bờm bằng cách share ngay và luôn bạn nhé!
Bot Bờm
Phép đối xứng trục
1. Cho đường thẳng \(d\). Phép biến hình biến mỗi điểm \(M\) thuộc \(d\) thành chính nó, biến mỗi điểm \(M\) không thuộc \(d\) thành \(M'\) sao cho \(d\) là đường trung trực của đoạn thẳng \(MM'\), được gọi là phép đối xứng qua đường thẳng \(d\) hay phép đối xứng trục \(d\).
Phép đối xứng trục \(d\) thường được kí hiệu là \(Đ_d\)
Nếu hình \(H'\) là ảnh của hình \(H\) qua \(Đ_d\) thì ta còn nói \(H\) đối xứng với \(H'\) qua \(d\), hay \(H\) và \(H'\) đối xứng với nhau qua \(d\).
2. Cho đường thẳng \(d\). Với mỗi điểm \(M\), gọi \(M''\) là hình chiếu vuông góc của \(M\) trên đường thẳng \(d\). Khi đó
\(M' = Đ_d(M)\) khi và chỉ khi \(\overrightarrow{M''M'}\) = \(\overrightarrow{-M''M}\)
3. \(M' = Đ_d(M)\) khi và chỉ khi \(M = Đ_d(M')\)
4.- Biểu thức tọa độ của phép đối xứng qua trục \(Ox\):
\(\left\{\begin{matrix} {x}'= x\\ {y}'= -y. \end{matrix}\right.\)
- Biểu thức tọa độ của phép đối xứng qua trục \(Oy\)
\(\left\{\begin{matrix} {x}'= -x\\ {y}'= y \end{matrix}\right.\)
5. Phép đối xứng trục bảo toàn khoảng cách giữa hai điểm bất kì.
6. Phép đối xứng trục biến đường thẳng thành đường thẳng, biến đoạn thẳng thành đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nó, biến đường tròn thành đường tròn cùng bán kính.
7. Đường thẳng \(d\) được gọi là trục đối xứng của hình \(H\) nếu phép đối xứng qua \(d\) biến \(H\) thành chính nó. Tức \(Đ_d (H') = H\)
Khi đó ta nói \(H\) là hình có trục đối xứng
Xem thêm: phép đối xứng trụcphép đối xứng tâmphép chiếu vuông gócphép chiếu song songphép toán trên các biến cố
Bot Bờm
Thử và cho Bot Bờm ý kiến nhé.