Tích vô hướng của hai vectơ \(\vec u\) và \(\vec v\) đều khác vectơ-không là một số được kí hiệu là \(\vec u .\vec v\) xác dịnh bởi:
\(\overrightarrow u .\overrightarrow v = \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.c{\rm{os(}}\overrightarrow {\rm{u}} .\overrightarrow v )\)
Nếu \(\vec u= \vec0\) hoặc \(\vec v= \vec0\) thì ta quy ước \(\vec u.\vec v=0.\)
b) Tính chất tích vô hướng của hai vectơ
Với ba vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c\) trong không gian và với mọi số k ta có:
\(\overrightarrow a .\overrightarrow b = \overrightarrow b .\overrightarrow a\) (tính chất giao hoán).
\(\overrightarrow a (\overrightarrow b + \overrightarrow c ) = \overrightarrow a .\overrightarrow b + \overrightarrow a .\overrightarrow c\) (tính chất phân phối).
\((k.\overrightarrow a ).\overrightarrow b = k.(\overrightarrow a .\overrightarrow b ) = \overrightarrow a .k\overrightarrow b .\)
\({\overrightarrow a ^2} \ge 0,{\overrightarrow a ^2} = 0 \Leftrightarrow \overrightarrow a = \overrightarrow 0.\)
c) Ứng dụng của tích vô hướng
Xác định góc giữa hai vectơ \(\vec u\) và \(\vec v\) bằng \(c{\rm{os(}}\overrightarrow {\rm{u}} .\overrightarrow v )\) theo công thức: \(c{\rm{os(}}\overrightarrow {\rm{u}} .\overrightarrow v ) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow v } \right|}}\).
Chào bạn. Bạn có thể hỏi Bờm các câu hỏi đại loại như: "Tập hợp con là gì", "khái niệm tập hợp", "pt bậc 2", "hàm bậc nhất là gì", "lực ma sát là gì", "sin x"... Thử và cho Bot Bờm ý kiến nhé.
Bốt Bờm biết gì?
Bốt Bờm đã học được:
Đại số và Hình học lớp 10
Đại số và Giải tích, Hình học lớp 11
Giải tích và Hình học lớp 12
và Bốt Bờm đang chăm chỉ học tiếp các kiến thức khác
Mời bạn dành chút thời gian góp ý tại đây để Bot Bờm hoàn thiện hơn nhé. Cảm ơn bạn và chúc bạn học thật tốt!
Ủng hộ Bot Bờm bằng cách share ngay và luôn bạn nhé!
Bot Bờm
Tích vô hướng của hai vectơ trong không gian
a) Định nghĩa tích vô hướng của hai vectơ
Tích vô hướng của hai vectơ \(\vec u\) và \(\vec v\) đều khác vectơ-không là một số được kí hiệu là \(\vec u .\vec v\) xác dịnh bởi:
\(\overrightarrow u .\overrightarrow v = \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.c{\rm{os(}}\overrightarrow {\rm{u}} .\overrightarrow v )\)
Nếu \(\vec u= \vec0\) hoặc \(\vec v= \vec0\) thì ta quy ước \(\vec u.\vec v=0.\)
b) Tính chất tích vô hướng của hai vectơ
Với ba vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c\) trong không gian và với mọi số k ta có:
c) Ứng dụng của tích vô hướng
Xác định góc giữa hai vectơ \(\vec u\) và \(\vec v\) bằng \(c{\rm{os(}}\overrightarrow {\rm{u}} .\overrightarrow v )\) theo công thức: \(c{\rm{os(}}\overrightarrow {\rm{u}} .\overrightarrow v ) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow v } \right|}}\).
Xem thêm: tích vô hướng của hai vectơ trong không giangóc giữa hai vectơ trong không gianđịnh nghĩa vectơ trong không giancác phép toán về vectơ trong không giangóc giữa hai đường thẳng trong không gian
Bot Bờm
Thử và cho Bot Bờm ý kiến nhé.