Cho T là một phép thử ngẫu nhiên với không gian mẫu \(\Omega \) là một tập hữu hạn. Giả sử A là một biến cố được mô ta bằng \({\Omega _A} \subset \Omega \). Xác suất của biến cố A, kí hiệu bởi P(A), được cho bởi công thức
Chú ý: \( \bullet \) Xác suất của biến cố A chỉ phụ thuộc vào số kết quả thuận lợi cho A, nên ta đồng nhất \({\Omega _A}\) với A nên ta có : \(P(A) = \frac{{n(A)}}{{n(\Omega )}}\)
Chào bạn. Bạn có thể hỏi Bờm các câu hỏi đại loại như: "Tập hợp con là gì", "khái niệm tập hợp", "pt bậc 2", "hàm bậc nhất là gì", "lực ma sát là gì", "sin x"... Thử và cho Bot Bờm ý kiến nhé.
Bốt Bờm biết gì?
Bốt Bờm đã học được:
Đại số và Hình học lớp 10
Đại số và Giải tích, Hình học lớp 11
Giải tích và Hình học lớp 12
và Bốt Bờm đang chăm chỉ học tiếp các kiến thức khác
Mời bạn dành chút thời gian góp ý tại đây để Bot Bờm hoàn thiện hơn nhé. Cảm ơn bạn và chúc bạn học thật tốt!
Ủng hộ Bot Bờm bằng cách share ngay và luôn bạn nhé!
Bot Bờm
Xác suất của biến cố
Định nghĩa cổ điển của xác suất
Cho T là một phép thử ngẫu nhiên với không gian mẫu \(\Omega \) là một tập hữu hạn. Giả sử A là một biến cố được mô ta bằng \({\Omega _A} \subset \Omega \). Xác suất của biến cố A, kí hiệu bởi P(A), được cho bởi công thức
\(P(A) = \frac{{\left| {{\Omega _A}} \right|}}{{\left| \Omega \right|}} = \)\(\frac{{{\rm{So \, ket\, qua\, thuan\, loi\, cho\, A}}}}{{{\rm{So\, ket\, qua\, co\, the\, xay\, ra}}}}\).
Chú ý: \( \bullet \) Xác suất của biến cố A chỉ phụ thuộc vào số kết quả thuận lợi cho A, nên ta đồng nhất \({\Omega _A}\) với A nên ta có : \(P(A) = \frac{{n(A)}}{{n(\Omega )}}\)
\( \bullet \) \(P(\Omega ) = 1,{\rm{ }}P(\emptyset ) = 0,{\rm{ }}0 \le P(A) \le 1\)
Định nghĩa thống kê của xác suất
Xét phép thử ngẫu nhiên T và một biến cố A liên quan tới phép thử đó. Nếu tiến hành lặp đi lặp lại N lần phép thử T và thống kê số lần xuất hiện của A
Khi đó xác suất của biến cố A được định nghĩa như sau:
\(P(A) = \)\(\frac{{{\rm{So \, lan \, xuat \, hien \, cua \, bien \, co \, A}}}}{N}\).
Tính chất của xác suất
a) \(P(\emptyset ) = \,0,P(\Omega ) = \,1\)
b) \(0 \le P(A) \le \,\,1\), với mọi biến cố A.
c) Nếu A và B xung khắc thì:
\(P(A \cup B)\, = \,P(A)\, + \,P(B)\,\) (công thức cộng xác suất).
d) Với mọi biến cố A ta có:
\({\rm{P(}}\overline {\rm{A}} {\rm{) = }}\,{\rm{1 - }}\,{\rm{P(A)}}\)
Xem thêm: xác suất của biến cốcông suất của dòng điệnphép toán trên các biến cốcông suất của nguồn điệnmệnh đề chứa biến là gì?
Bot Bờm
Thử và cho Bot Bờm ý kiến nhé.